论文标题

tegformer:主题覆盖范围良好的主题到纪录一代

TegFormer: Topic-to-Essay Generation with Good Topic Coverage and High Text Coherence

论文作者

Qi, Wang, Liu, Rui, Zuo, Yuan, Chen, Yong, Zhang, Dell

论文摘要

基于一些给定主题创建论文是一项具有挑战性的NLP任务。尽管最近出现了一些有关此问题的有效方法,但现在已经出现了很多改进的空间,尤其是在给定主题的覆盖范围和生成文本的连贯性方面。在本文中,我们提出了一种称为Tegformer的新方法,该方法利用了变压器体系结构,其中编码器具有特定于领域的上下文,而解码器则通过大规模的预训练的语言模型增强。具体而言,将给定主题及其特定领域特定上下文之间的相互作用捕获的\ emph {topip-extension}层被插入编码器中。由于给定的主题通常是简洁而稀疏的,因此这样的额外层可以带来更多与主题相关的语义,以促进随后的自然语言生成。此外,结合了从给定语料库中学到的域特定单词嵌入的一个\ emph {嵌入融合}模块,以及由GPT-2模型提供的通用单词嵌入在大规模文本数据上预先训练的gpt-2模型都积分为解码器。由于GPT-2的规模要大得多,因此它包含了更多隐含的语言知识,这将有助于解码器产生更多的语法和可读文本。广泛的实验表明,根据自动和人类评估,Tegformer生成的文本具有更好的主题覆盖范围和更高的文本连贯性。如《消融研究》所揭示的那样,主题扩展层和嵌入融合模块都为Tegformer的性能优势做出了重大贡献。

Creating an essay based on a few given topics is a challenging NLP task. Although several effective methods for this problem, topic-to-essay generation, have appeared recently, there is still much room for improvement, especially in terms of the coverage of the given topics and the coherence of the generated text. In this paper, we propose a novel approach called TegFormer which utilizes the Transformer architecture where the encoder is enriched with domain-specific contexts while the decoder is enhanced by a large-scale pre-trained language model. Specifically, a \emph{Topic-Extension} layer capturing the interaction between the given topics and their domain-specific contexts is plugged into the encoder. Since the given topics are usually concise and sparse, such an additional layer can bring more topic-related semantics in to facilitate the subsequent natural language generation. Moreover, an \emph{Embedding-Fusion} module that combines the domain-specific word embeddings learnt from the given corpus and the general-purpose word embeddings provided by a GPT-2 model pre-trained on massive text data is integrated into the decoder. Since GPT-2 is at a much larger scale, it contains a lot more implicit linguistic knowledge which would help the decoder to produce more grammatical and readable text. Extensive experiments have shown that the pieces of text generated by TegFormer have better topic coverage and higher text coherence than those from SOTA topic-to-essay techniques, according to automatic and human evaluations. As revealed by ablation studies, both the Topic-Extension layer and the Embedding-Fusion module contribute substantially to TegFormer's performance advantage.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源