论文标题

在HBN中延长自旋缺陷的连贯性时间可以实现高级量子控制和量子传感

Extending the coherence time of spin defects in hBN enables advanced qubit control and quantum sensing

论文作者

Rizzato, Roberto, Schalk, Martin, Mohr, Stephan, Leibold, Joachim P., Hermann, Jens C., Bruckmaier, Fleming, Ji, Peirui, Astakhov, Georgy V., Kentsch, Ulrich, Helm, Manfred, Stier, Andreas V., Finley, Jonathan J., Bucher, Dominik B.

论文摘要

六角硼硝化硼(HBN)中的自旋缺陷引起了对量子技术的兴趣,因为它们代表了范德华材料中的光学可调量子。特别是,HBN中带负电荷的硼空位中心($ {v_b}^ - $)已显示出有望作为温度,压力和静态磁场的传感器。但是,此缺陷的短自旋连贯性时间目前限制了其量子技术的范围。在这里,我们应用动态解耦技术来抑制磁噪声并将旋转连贯时间延长近两个数量级,接近基本$ T_1 $放松限制。基于此改进,我们展示了先进的自旋控制和一组量子传感协议,以检测MHz范围内具有子Hz分辨率的电磁信号。这项工作奠定了使用可去角色材料中自旋缺陷的纳米级传感的基础,并为量子传感器和量子网络的有前途的途径打开了集成到超薄结构中的量子网络。

Spin defects in hexagonal Boron Nitride (hBN) attract increasing interest for quantum technology since they represent optically-addressable qubits in a van der Waals material. In particular, negatively-charged boron vacancy centers (${V_B}^-$) in hBN have shown promise as sensors of temperature, pressure, and static magnetic fields. However, the short spin coherence time of this defect currently limits its scope for quantum technology. Here, we apply dynamical decoupling techniques to suppress magnetic noise and extend the spin coherence time by nearly two orders of magnitude, approaching the fundamental $T_1$ relaxation limit. Based on this improvement, we demonstrate advanced spin control and a set of quantum sensing protocols to detect electromagnetic signals in the MHz range with sub-Hz resolution. This work lays the foundation for nanoscale sensing using spin defects in an exfoliable material and opens a promising path to quantum sensors and quantum networks integrated into ultra-thin structures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源