论文标题
摊子获胜时,在树上的破坏者统治游戏
Maker-Breaker domination game on trees when Staller wins
论文作者
论文摘要
在$ g $上玩的制造商 - 破坏者统治游戏中,Dominator的目标是选择一个主导套装,而Staller的目标是声称某个顶点的封闭社区。我们研究摊子可以赢得比赛的案例。如果Dominator(分别,Staller)开始游戏,则$γ_ {\ rm smb}(g)$(resp。,$γ_ {\ rm smb}'(g)$)表示Staller需要获胜的最小动作数量。对于每个正整数$ k $,树木$ t $带有$γ_ {\ rm smb}'(t)= k $,并且证明了$γ_ {\ rm smb}'$的一般上限。令$ s = s(n_1,\ dots,n_ \ ell)$为从星星获得的细分星,分别用$ \ ell $ edges通过细分其边缘$ n_1-1,\ ldots,n_ \ ell-1 $ times。然后,$γ_ {\ rm smb}'(s)$在所有情况下都确定,除非$ \ ell \ ge 4 $,否则每个$ n_i $均匀。当至少两个奇数$ n_i $ s时,获得最简单的公式。如果$ n_1 $和$ n_2 $是两个最小的数字,则$γ_{\ rm smb}'(s(n_1,\ dots,n_ \ ell))= \ lceil \ log_2(n_1+n_1+n_2+n_2+1)\ rceil $。对于毛毛虫,建立了$γ_ {\ rm smb} $的精确公式和$γ_ {\ rm smb}'$的$。
In the Maker-Breaker domination game played on a graph $G$, Dominator's goal is to select a dominating set and Staller's goal is to claim a closed neighborhood of some vertex. We study the cases when Staller can win the game. If Dominator (resp., Staller) starts the game, then $γ_{\rm SMB}(G)$ (resp., $γ_{\rm SMB}'(G)$) denotes the minimum number of moves Staller needs to win. For every positive integer $k$, trees $T$ with $γ_{\rm SMB}'(T)=k$ are characterized and a general upper bound on $γ_{\rm SMB}'$ is proved. Let $S = S(n_1,\dots, n_\ell)$ be the subdivided star obtained from the star with $\ell$ edges by subdividing its edges $n_1-1, \ldots, n_\ell-1$ times, respectively. Then $γ_{\rm SMB}'(S)$ is determined in all the cases except when $\ell\ge 4$ and each $n_i$ is even. The simplest formula is obtained when there are at least two odd $n_i$s. If $n_1$ and $n_2$ are the two smallest such numbers, then $γ_{\rm SMB}'(S(n_1,\dots, n_\ell))=\lceil \log_2(n_1+n_2+1)\rceil$. For caterpillars, exact formulas for $γ_{\rm SMB}$ and for $γ_{\rm SMB}'$ are established.