论文标题
$ {\ sf rcd}(k,n)$ space上的一阶热内容渐近学
First-order heat content asymptotics on ${\sf RCD}(K,N)$ spaces
论文作者
论文摘要
在本文中,当环境空间为$ {\ sf rcd}(k,n)$空间时,我们在限制的开放式热量含量上证明了一阶渐近学,这是我们称为测量尺寸$ε$的测量的边界的规律性条件。我们仔细研究了这种条件,将其与卡瓦莱蒂和蒙迪诺研究的$ \ partialω$分解的特性有关。
In this paper, we prove first-order asymptotics on a bounded open set of the heat content when the ambient space is an ${\sf RCD}(K,N)$ space, under a regularity condition for the boundary that we call measured interior geodesic condition of size $ε$. We carefully study such a condition, relating it to the properties of the disintegration of the signed distance function from $\partial Ω$ studied by Cavalletti and Mondino.