论文标题
将情绪纳入健康媒体上的分类任务
Incorporating Emotions into Health Mention Classification Task on Social Media
论文作者
论文摘要
健康提及分类(HMC)任务是识别和分类文本中与健康相关概念的过程。这对于通过社交媒体帖子来识别和跟踪疾病的传播可能很有用。但是,这是一项非平凡的任务。在这里,我们基于最近的研究,表明使用情感信息可能会改善此任务。我们的研究导致健康框架提及结合情感特征的分类。我们提出了两种方法,一种中间任务微调方法(隐式)和一种多配合融合方法(显式),将情绪纳入我们的HMC目标任务中。我们评估了来自不同社交媒体平台的5个与HMC相关的数据集的方法,其中包括Twitter的3个,一个来自Reddit,另一种来自社交媒体来源的组合。广泛的实验表明,我们的方法会导致HMC任务上具有统计学意义的性能提高。通过使用多功能融合方法,我们在所有数据集中,与BERT基准相比,F1得分至少提高了3%。我们还表明,仅考虑负面情绪不会显着影响HMC任务的性能。此外,我们的结果表明,注入情感知识的HMC模型是有效的替代方法,尤其是当其他HMC数据集无法用于特定领域的微调时。我们的模型的源代码可在https://github.com/tahirlanre/emotion_phm上免费获得。
The health mention classification (HMC) task is the process of identifying and classifying mentions of health-related concepts in text. This can be useful for identifying and tracking the spread of diseases through social media posts. However, this is a non-trivial task. Here we build on recent studies suggesting that using emotional information may improve upon this task. Our study results in a framework for health mention classification that incorporates affective features. We present two methods, an intermediate task fine-tuning approach (implicit) and a multi-feature fusion approach (explicit) to incorporate emotions into our target task of HMC. We evaluated our approach on 5 HMC-related datasets from different social media platforms including three from Twitter, one from Reddit and another from a combination of social media sources. Extensive experiments demonstrate that our approach results in statistically significant performance gains on HMC tasks. By using the multi-feature fusion approach, we achieve at least a 3% improvement in F1 score over BERT baselines across all datasets. We also show that considering only negative emotions does not significantly affect performance on the HMC task. Additionally, our results indicate that HMC models infused with emotional knowledge are an effective alternative, especially when other HMC datasets are unavailable for domain-specific fine-tuning. The source code for our models is freely available at https://github.com/tahirlanre/Emotion_PHM.