论文标题
SE(3)的网格神经网络 - 均衡性血流动力学估计在动脉壁上
Mesh Neural Networks for SE(3)-Equivariant Hemodynamics Estimation on the Artery Wall
论文作者
论文摘要
计算流体动力学(CFD)是患者特异性心血管疾病诊断和预后的宝贵资产,但其较高的计算要求妨碍了其在实践中的采用。估计单个患者血流的机器学习方法可以加速或替代CFD模拟以克服这些局限性。在这项工作中,我们考虑了三维几何动脉模型壁上矢量值量的估计。我们在端到端的SE(3) - 等级神经网络中采用群体等效图卷积,该神经网络直接在三角形的表面网格上运行,并有效地利用了训练数据。我们在合成冠状动脉的大数据集上进行实验,发现我们的方法估计了方向壁剪应力(WSS),近似误差为7.6%,归一化的平均绝对误差(NMAE)为0.4%,而最高两个数量级的差额比CFD更快。此外,我们表明我们的方法足够强大,可以在心脏周期中准确预测瞬态,矢量值WSS,同时在各种不同的流入边界条件下进行条件。这些结果证明了我们提出的方法作为CFD的插件的潜力,用于在血液动力学载体和标量场的个性化预测中。
Computational fluid dynamics (CFD) is a valuable asset for patient-specific cardiovascular-disease diagnosis and prognosis, but its high computational demands hamper its adoption in practice. Machine-learning methods that estimate blood flow in individual patients could accelerate or replace CFD simulation to overcome these limitations. In this work, we consider the estimation of vector-valued quantities on the wall of three-dimensional geometric artery models. We employ group equivariant graph convolution in an end-to-end SE(3)-equivariant neural network that operates directly on triangular surface meshes and makes efficient use of training data. We run experiments on a large dataset of synthetic coronary arteries and find that our method estimates directional wall shear stress (WSS) with an approximation error of 7.6% and normalised mean absolute error (NMAE) of 0.4% while up to two orders of magnitude faster than CFD. Furthermore, we show that our method is powerful enough to accurately predict transient, vector-valued WSS over the cardiac cycle while conditioned on a range of different inflow boundary conditions. These results demonstrate the potential of our proposed method as a plugin replacement for CFD in the personalised prediction of hemodynamic vector and scalar fields.