论文标题
通过统计方法检测方形晶格中的拓扑阶段
Detecting topological phases in the square-octagon lattice with statistical methods
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Electronic systems living on Archimedean lattices such as kagome and square-octagon networks are presently being intensively discussed for the possible realization of topological insulating phases. Coining the most interesting electronic topological states in an unbiased way is however not straightforward due to the large parameter space of possible Hamiltonians. A possible approach to tackle this problem is provided by a recently developed statistical learning method [T. Mertz and R. Valentí, Phys. Rev. Research 3, 013132 (2021)], based on the analysis of a large data sets of randomized tight-binding Hamiltonians labeled with a topological index. In this work, we complement this technique by introducing a feature engineering approach which helps identifying polynomial combinations of Hamiltonian parameters that are associated with non-trivial topological states. As a showcase, we employ this method to investigate the possible topological phases that can manifest on the square-octagon lattice, focusing on the case in which the Fermi level of the system lies at a high-order van Hove singularity, in analogy to recent studies of topological phases on the kagome lattice at the van Hove filling.