论文标题

通过芯片培训的多层机器学习均衡器实施FPGA

FPGA Implementation of Multi-Layer Machine Learning Equalizer with On-Chip Training

论文作者

Liu, Keren, Börjeson, Erik, Häger, Christian, Larsson-Edefors, Per

论文摘要

我们设计并实施了自适应机学习均衡器,该均衡器可以在FPGA上交替使用多个线性和非线性计算层。证明通过梯度反向传播的芯片训练可以实时适应时间变化的通道障碍。

We design and implement an adaptive machine learning equalizer that alternates multiple linear and nonlinear computational layers on an FPGA. On-chip training via gradient backpropagation is shown to allow for real-time adaptation to time-varying channel impairments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源