论文标题

Adir:图像重建的自适应扩散

ADIR: Adaptive Diffusion for Image Reconstruction

论文作者

Abu-Hussein, Shady, Tirer, Tom, Giryes, Raja

论文摘要

近年来,Denoising扩散模型表现出出色的图像产生性能。这些模型捕获的自然图像的信息对于许多图像重建应用程序很有用,在此任务是从其降解观测值中恢复干净的图像。在这项工作中,我们提出了一个条件抽样方案,该方案利用扩散模型学到的先验学会,同时保留与观测值一致的情况。然后,我们将其与一种新型方法相结合,以适应预验证的扩散将网络定位到其输入中。我们检查了两种适应策略:第一个仅使用降级图像,而我们倡导的第二个则使用``最近的邻居''的图像执行降级图像,该图像使用现成的视觉视觉模型从多样化的数据集中检索。为了评估我们的方法,我们将其对两个最新的公开扩散模型进行测试,即稳定的扩散和引导扩散。我们表明,我们提出的“图像重建的自适应扩散”(ADIR)方法可以显着改善超分辨率,脱张和基于文本的编辑任务。

In recent years, denoising diffusion models have demonstrated outstanding image generation performance. The information on natural images captured by these models is useful for many image reconstruction applications, where the task is to restore a clean image from its degraded observations. In this work, we propose a conditional sampling scheme that exploits the prior learned by diffusion models while retaining agreement with the observations. We then combine it with a novel approach for adapting pretrained diffusion denoising networks to their input. We examine two adaption strategies: the first uses only the degraded image, while the second, which we advocate, is performed using images that are ``nearest neighbors'' of the degraded image, retrieved from a diverse dataset using an off-the-shelf visual-language model. To evaluate our method, we test it on two state-of-the-art publicly available diffusion models, Stable Diffusion and Guided Diffusion. We show that our proposed `adaptive diffusion for image reconstruction' (ADIR) approach achieves a significant improvement in the super-resolution, deblurring, and text-based editing tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源