论文标题

扩展雪的算法用于有限的Weyl组计算

Extending Snow's algorithm for computations in the finite Weyl groups

论文作者

Stekolshchik, Rafael

论文摘要

1990年,D.Snow提出了一种用于计算有限Weyl基团轨道的有效算法。 Snow的算法是为了计算Weyl组的重量,$ W $ - 器和元素的计算。提出了SNOW算法的扩展,该算法允许在同一运行时周期中找到一对相互反向元素以及计算$ W $ - 器的计算。这简化了Weyl组中共轭类别的计算。例如,给出了使用扩展雪的算法获得的Weyl Group $ W(D_4)$的元素的完整列表。 $ w(d_4)$的元素以两种方式指定:降低表达式和忠实表示的矩阵。我们将该小组的分区介绍为结合类,其元素指定为减少表达式。为$ W(D_4)$的共轭类别的代表提供了各种形式:使用Carter图,使用降低表达式并使用签名的周期类型。在附录中,我们提供了Python中该算法的实现。

In 1990, D.Snow proposed an effective algorithm for computing the orbits of finite Weyl groups. Snow's algorithm is designed for computation of weights, $W$-orbits and elements of the Weyl group. An extension of Snow's algorithm is proposed, which allows to find pairs of mutually inverse elements together with the calculation of $W$-orbits in the same runtime cycle. This simplifies the calculation of conjugacy classes in the Weyl group. As an example, the complete list of elements of the Weyl group $W(D_4)$ obtained using the extended Snow's algorithm is given. The elements of $W(D_4)$ are specified in two ways: as reduced expressions and as matrices of the faithful representation. We present a partition of this group into conjugacy classes with elements specified as reduced expressions. Various forms are given for representatives of the conjugacy classes of $W(D_4)$: using Carter diagrams, using reduced expressions and using signed cycle-types. In the appendix, we provide an implementation of the algorithm in Python.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源