论文标题
与单层半导体的半准接触:弱金属化,作为降低雪花屏障的有效机制
Semimetal Contacts to Monolayer Semiconductor: Weak Metalization as an Effective Mechanism to Schottky Barrier Lowering
论文作者
论文摘要
最近的实验已经发现了半晶晶曲(BI),是与单层MOS $ _2 $具有超大接触电阻的极好的电气接触。然而,到目前为止,BI/MOS $ _2 $以外的更广泛的半学/单层 - 肺导能家族的接触物理学在很大程度上尚未得到探索。在这里,我们对六种原型二维(2D)过渡金属二色儿氏元素(TMDC)半导体之间的电气接触属性进行全面的第一原理密度功能理论研究,即MOS $ _2 $,WS $ _2 $,MOSE $ _2 $,Mose $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2和半法,BI和锑(SB)。随着BI和SB的功能在能量上与TMDC传导带边缘很好地保持一致,欧姆或几乎荷兰$ n $ type的触点很普遍。半含量/TMDC接触的层间距离明显大于金属/TMDC对应物的距离,这仅导致接触形成时TMDC的金属化弱。有趣的是,这种弱金属化产生了半学诱导的间隙状态(MIG),该差距延伸至最低传导带,从而提供了一种有效的机制来减少或消除$ n $ type schottky屏障高度(SBH),同时仍然保留了2D TMDC的电子结构。提出了一项修改后的Schottky-mott规则,该规则考虑了SMIG,接口偶极电位和费米级别的转移,该规则提出了与DFT模拟的SBH的改进一致性。我们进一步表明,SB/TMDC触点的隧道特异性电阻率通常低于BI对应物,因此表明可以通过SB触点实现更好的电荷注入效率。我们的发现揭示了BI和SB作为优秀的伴随电极材料的有希望的潜力,用于推进2D半导体设备技术。
Recent experiment has uncovered semimetal bismuth (Bi) as an excellent electrical contact to monolayer MoS$_2$ with ultralow contact resistance. The contact physics of the broader semimetal/monolayer-semiconductor family beyond Bi/MoS$_2$, however, remains largely unexplored thus far. Here we perform a comprehensive first-principle density functional theory investigation on the electrical contact properties between six archetypal two-dimensional (2D) transition metal dichalcogenide (TMDC) semiconductors, i.e. MoS$_2$, WS$_2$, MoSe$_2$, WSe$_2$, MoTe$_2$ and WTe$_2$, and two representative types of semimetals, Bi and antimony (Sb). As Bi and Sb work functions energetically aligns well with the TMDC conduction band edge, Ohmic or nearly-Ohmic $n$-type contacts are prevalent. The interlayer distance of semimetal/TMDC contacts are significantly larger than that of the metal/TMDC counterparts, which results in only weak metalization of TMDC upon contact formation. Intriguingly, such weak metalization generates semimetal-induced gap states (MIGS) that extends below the conduction band minimum, thus offering an effective mechanism to reduce or eliminate the $n$-type Schottky barrier height (SBH) while still preserving the electronic structures of 2D TMDC. A modified Schottky-Mott rule that takes into account SMIGS, interface dipole potential, and Fermi level shifting is proposed, which provides an improved agreement with the DFT-simulated SBH. We further show that the tunneling-specific resistivity of Sb/TMDC contacts are generally lower than the Bi counterparts, thus indicating a better charge injection efficiency can be achieved through Sb contacts. Our findings reveal the promising potential of Bi and Sb as excellent companion electrode materials for advancing 2D semiconductor device technology.