论文标题
班级开展语义细分的证据深度学习
Evidential Deep Learning for Class-Incremental Semantic Segmentation
论文作者
论文摘要
班级学习是机器学习中的一个具有挑战性的问题,旨在通过新课程扩展以前训练的神经网络。如果系统不可用,尽管系统能够对新对象进行分类,这将特别有用。尽管语义细分问题的关注程度少于分类,但它带来了明显的问题和挑战,因为以前和未来的目标类别在单个增量的图像中可能没有标记。在这种情况下,背景,过去和将来的课程是相关的,并且存在背景转移。在本文中,我们解决了如何建模未标记类的问题,同时避免了未来不相关类的虚假特征聚类。我们建议使用证据深度学习将类别的证据模拟为差异的分布。我们的方法将问题分配为单独的前景类别概率,该概率是由Dirichlet分布的期望值计算得出的,以及与估计值不确定性相对应的未知类别(背景)概率。在我们新颖的公式中,背景概率是隐式建模的,避免了强迫模型输出未标记为对象的像素的高背景得分所带来的特征空间聚类。关于增量Pascal VOC和ADE20K基准的实验表明,我们的方法优于最新方法,尤其是在反复学习以增加数量增量的新课程时。
Class-Incremental Learning is a challenging problem in machine learning that aims to extend previously trained neural networks with new classes. This is especially useful if the system is able to classify new objects despite the original training data being unavailable. While the semantic segmentation problem has received less attention than classification, it poses distinct problems and challenges since previous and future target classes can be unlabeled in the images of a single increment. In this case, the background, past and future classes are correlated and there exist a background-shift. In this paper, we address the problem of how to model unlabeled classes while avoiding spurious feature clustering of future uncorrelated classes. We propose to use Evidential Deep Learning to model the evidence of the classes as a Dirichlet distribution. Our method factorizes the problem into a separate foreground class probability, calculated by the expected value of the Dirichlet distribution, and an unknown class (background) probability corresponding to the uncertainty of the estimate. In our novel formulation, the background probability is implicitly modeled, avoiding the feature space clustering that comes from forcing the model to output a high background score for pixels that are not labeled as objects. Experiments on the incremental Pascal VOC, and ADE20k benchmarks show that our method is superior to state-of-the-art, especially when repeatedly learning new classes with increasing number of increments.