论文标题
关于在巴内特图中查找哈密顿周期
On finding hamiltonian cycles in Barnette graphs
论文作者
论文摘要
在本文中,我们在平面图中处理了hamiltonicity g/q中的面部面部面部面部的面部(准)面部的面部Q,并研究了发现(Quasi)跨越面部树木的算法的复杂性。此外,我们表明,如果Barnette的猜想是错误的,那么在3个连接的平面立方双分部分图中的Hamiltonity是NP完整的问题。
In this paper, we deal with hamiltonicity in planar cubic graphs G having a facial 2-factor Q via (quasi) spanning trees of faces in G/Q and study the algorithmic complexity of finding such (quasi) spanning trees of faces. Moreover, we show that if Barnette's Conjecture is false, then hamiltonicity in 3-connected planar cubic bipartite graphs is an NP-complete problem.