论文标题
基于深度表示学习的端到端记录设备识别
End-to-end Recording Device Identification Based on Deep Representation Learning
论文作者
论文摘要
深度学习技术在记录设备源识别方面取得了特定的结果。录制设备源功能包括空间信息和某些时间信息。但是,大多数基于深度学习的设备源识别方法仅使用从记录设备源特征中学习的空间表示,该方法无法充分利用记录设备源信息。因此,在本文中,为了充分探索记录设备源的空间信息和时间信息,我们提出了一种基于空间特征信息和时间特征信息融合的新方法来记录设备源识别,并使用端到端框架。从功能的角度来看,我们设计了两种网络来提取记录设备源的空间和时间信息。之后,我们使用注意机制适应性地分配了空间信息和时间信息的重量,以获得融合特征。从模型的角度来看,我们的模型使用端到端框架从空间功能和时间功能中学习深层表示,并使用深层且浅层损失来训练以优化我们的网络。将此方法与我们以前的工作和基线系统进行比较。结果表明,在一般条件下,提出的方法比我们以前的工作和基线系统更好。
Deep learning techniques have achieved specific results in recording device source identification. The recording device source features include spatial information and certain temporal information. However, most recording device source identification methods based on deep learning only use spatial representation learning from recording device source features, which cannot make full use of recording device source information. Therefore, in this paper, to fully explore the spatial information and temporal information of recording device source, we propose a new method for recording device source identification based on the fusion of spatial feature information and temporal feature information by using an end-to-end framework. From a feature perspective, we designed two kinds of networks to extract recording device source spatial and temporal information. Afterward, we use the attention mechanism to adaptively assign the weight of spatial information and temporal information to obtain fusion features. From a model perspective, our model uses an end-to-end framework to learn the deep representation from spatial feature and temporal feature and train using deep and shallow loss to joint optimize our network. This method is compared with our previous work and baseline system. The results show that the proposed method is better than our previous work and baseline system under general conditions.