论文标题

具有边界奇数圆周图中最大数量的集团数

The maximum number of cliques in graphs with bounded odd circumference

论文作者

Lv, Zequn, Győri, Ervin, He, Zhen, Salia, Nika, Xiao, Chuanqi, Zhu, Xiutao

论文摘要

在这项工作中,我们为具有界限奇数的图形中的簇数给出了锋利的上限。这个广义的Turán型结果是著名的Erdős和Gallai定理的扩展以及Luo最近的结果的加强。具有有界的均匀圆周图的图形的相同绑定是Li和Ning定理的微不足道应用。

In this work, we give the sharp upper bound for the number of cliques in graphs with bounded odd circumferences. This generalized Turán-type result is an extension of the celebrated Erdős and Gallai theorem and a strengthening of Luo's recent result. The same bound for graphs with bounded even circumferences is a trivial application of the theorem of Li and Ning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源