论文标题
特殊的哈密顿$ s^1 $ - 符号4-manifolds
Special Hamiltonian $S^1$-actions on symplectic 4-manifolds
论文作者
论文摘要
在本文中,我们考虑了$ C_1(m,ω)= 0 $的Symplectic 4-manifolds $(m,ω)$,该$ n允许hamiltonian $ s^1 $ action,以及在集体诉讼的轨道上的马斯洛夫条件。我们称之为此类空间{\ em Special Hamiltonian $ S^1 $ -Spaces}。事实证明,没有紧凑的特殊汉密尔顿$ s^1 $空间。我们对所有精确的特殊汉密尔顿$ s^1 $ spaces进行了分类,并证明所有这些都承认了斯坦(Stein)表面的结构。
In this paper we consider symplectic 4-manifolds $(M,ω)$ with $c_1(M,ω)=0$ which admit a Hamiltonian $S^1$-action together with an equivariant Maslov condition on orbits of the group action. We call such spaces {\em special Hamiltonian $S^1$-spaces}. It turns out that there are no compact special Hamiltonian $S^1$-spaces. We classify all exact special Hamiltonian $S^1$-spaces and show that all of them admit the structure of a Stein surface.