论文标题

通过控制屏障功能对基于安全学习的弹性联合机器人的控制

Safe Learning-Based Control of Elastic Joint Robots via Control Barrier Functions

论文作者

Lederer, Armin, Begzadić, Azra, Das, Neha, Hirche, Sandra

论文摘要

确保安全至关重要,这在物理人类机器人的互动应用中至关重要。这既需要遵守系统状态定义的安全限制,又需要保证机器人的合规行为。如果确切地知道了基础动力系统,则可以借助控制屏障功能来解决前者。弹性执行器在机器人的机械设计中的掺入可以解决后一种要求。但是,这种弹性可以增加所得系统的复杂性,从而导致未模块化的动力学,从而使控制屏障功能无法直接确保安全性。在本文中,我们通过使用高斯流程回归学习未知动态来缓解这个问题。通过在反馈中使用该模型线性化控制法,可以将控制屏障功能引起的安全条件鲁棒考虑以考虑模型错误,同时保持可行。为了在线强制执行它们,我们以二阶圆锥计划的形式制定了派生的安全条件。我们证明了我们提出的方法,并在具有弹性关节的两度自由的平面机器人上进行了模拟。

Ensuring safety is of paramount importance in physical human-robot interaction applications. This requires both adherence to safety constraints defined on the system state, as well as guaranteeing compliant behavior of the robot. If the underlying dynamical system is known exactly, the former can be addressed with the help of control barrier functions. The incorporation of elastic actuators in the robot's mechanical design can address the latter requirement. However, this elasticity can increase the complexity of the resulting system, leading to unmodeled dynamics, such that control barrier functions cannot directly ensure safety. In this paper, we mitigate this issue by learning the unknown dynamics using Gaussian process regression. By employing the model in a feedback linearizing control law, the safety conditions resulting from control barrier functions can be robustified to take into account model errors, while remaining feasible. In order to enforce them on-line, we formulate the derived safety conditions in the form of a second-order cone program. We demonstrate our proposed approach with simulations on a two-degree-of-freedom planar robot with elastic joints.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源