论文标题
在银河丝上揭示银河系介质的丝状结构的监督机学习
Supervised machine learning on Galactic filaments Revealing the filamentary structure of the Galactic interstellar medium
论文作者
论文摘要
语境。细丝在银河系中无处不在,它们构成了恒星形成。因此,以可靠的方式检测它们是我们对恒星形成过程的理解的关键。 目标。我们探索监督的机器学习是否可以识别整个银河平面上的丝状结构。 方法。我们使用了两个基于UNET的网络进行图像分割。我们使用了用Herschel Hi-Gal数据作为输入数据获得的银河平面的H2柱密度图像。我们用从这些图像中提取的细丝的骨骼(脊柱加上分支)培训了基于UNET的网络,以及我们生成的背景和缺少的数据掩模。我们测试了八种训练场景,以确定我们的天体物理目的的最佳场景,将像素分类为细丝。 结果。 UNET的训练使我们能够通过分割来创建银河平面的新图像,在该分段中,确定了属于丝状结构的像素。使用这种新方法,我们将更多像素(根据所使用的分类阈值增加2到7倍)属于细丝,而不是我们用作输入的Spine Plus分支结构。揭示了新的结构,这些结构主要是以前未检测到的低对比度丝。我们使用标准指标来评估不同训练方案的性能。这使我们能够证明该方法的鲁棒性,并确定最大化输入标记的像素分类的恢复的最佳阈值。 结论。这项概念验证的研究表明,监督的机器学习可以揭示整个银河平面中存在的丝状结构。检测这些结构,包括以前从未见过的低密度和低对比度结构,为研究这些细丝提供了重要的观点。
Context. Filaments are ubiquitous in the Galaxy, and they host star formation. Detecting them in a reliable way is therefore key towards our understanding of the star formation process. Aims. We explore whether supervised machine learning can identify filamentary structures on the whole Galactic plane. Methods. We used two versions of UNet-based networks for image segmentation.We used H2 column density images of the Galactic plane obtained with Herschel Hi-GAL data as input data. We trained the UNet-based networks with skeletons (spine plus branches) of filaments that were extracted from these images, together with background and missing data masks that we produced. We tested eight training scenarios to determine the best scenario for our astrophysical purpose of classifying pixels as filaments. Results. The training of the UNets allows us to create a new image of the Galactic plane by segmentation in which pixels belonging to filamentary structures are identified. With this new method, we classify more pixels (more by a factor of 2 to 7, depending on the classification threshold used) as belonging to filaments than the spine plus branches structures we used as input. New structures are revealed, which are mainly low-contrast filaments that were not detected before.We use standard metrics to evaluate the performances of the different training scenarios. This allows us to demonstrate the robustness of the method and to determine an optimal threshold value that maximizes the recovery of the input labelled pixel classification. Conclusions. This proof-of-concept study shows that supervised machine learning can reveal filamentary structures that are present throughout the Galactic plane. The detection of these structures, including low-density and low-contrast structures that have never been seen before, offers important perspectives for the study of these filaments.