论文标题

多种多尺度有限元方法的非侵入性实施

Non-intrusive implementation of a wide variety of Multiscale Finite Element Methods

论文作者

Biezemans, Rutger A., Bris, Claude Le, Legoll, Frédéric, Lozinski, Alexei

论文摘要

多尺度有限元方法(MSFEM)现在是专门针对多尺度问题的有限元类型方法。他们首先计算局部,振荡,问题依赖性基础函数,该函数生成合适的离散空间,然后在该空间上执行问题的盖尔金近似。我们在这里研究如何以非侵入性的方式实施这些方法,以促进它们在工业法规或非学术环境中的传播。我们开发了一个抽象框架,该框架涵盖了线性二阶偏微分方程的各种MSFEM。非侵入性的MSFEM方法是在该框架的全部一般性中开发的,这可能对转向软件开发和改善MSFEM的理论理解和分析有益。

Multiscale Finite Element Methods (MsFEMs) are now well-established finite element type approaches dedicated to multiscale problems. They first compute local, oscillatory, problem-dependent basis functions that generate a suitable discretization space, and next perform a Galerkin approximation of the problem on that space. We investigate here how these approaches can be implemented in a non-intrusive way, in order to facilitate their dissemination within industrial codes or non-academic environments. We develop an abstract framework that covers a wide variety of MsFEMs for linear second-order partial differential equations. Non-intrusive MsFEM approaches are developed within the full generality of this framework, which may moreover be beneficial to steering software development and improving the theoretical understanding and analysis of MsFEMs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源