论文标题

金属意识嵌入CBCT投影

Metal-conscious Embedding for CBCT Projection Inpainting

论文作者

Fan, Fuxin, Wang, Yangkong, Ritschl, Ludwig, Biniazan, Ramyar, Beister, Marcel, Kreher, Björn, Huang, Yixing, Kappler, Steffen, Maier, Andreas

论文摘要

锥形束计算机断层扫描(CBCT)投影图像中的金属植入物的存在引入了不希望的人工制品,从而降低了重建图像的质量。为了减少金属伪像,投影涂漆是许多金属伪像还原算法的重要步骤。在这项工作中,建议将移位窗口(SWIN)视觉变压器(VIT)和卷积神经网络组合在一起,作为用于填充任务的基线网络。为了纳入基于Swin Vit的编码器的金属信息,研究了金属意识的自我嵌入和邻里插入方法。两种方法都改善了基线网络的性能。此外,通过选择适当的窗口尺寸,具有邻里插入的模型可以在金属区域达到0.079的最低平均绝对误差,而CBCT预测中的最高峰信噪比为42.346。最后,已经证明了在模拟和真实的CADAVER CBCT数据上嵌入金属意识的效率,在此,基线网络的覆盖能力已得到增强。

The existence of metallic implants in projection images for cone-beam computed tomography (CBCT) introduces undesired artifacts which degrade the quality of reconstructed images. In order to reduce metal artifacts, projection inpainting is an essential step in many metal artifact reduction algorithms. In this work, a hybrid network combining the shift window (Swin) vision transformer (ViT) and a convolutional neural network is proposed as a baseline network for the inpainting task. To incorporate metal information for the Swin ViT-based encoder, metal-conscious self-embedding and neighborhood-embedding methods are investigated. Both methods have improved the performance of the baseline network. Furthermore, by choosing appropriate window size, the model with neighborhood-embedding could achieve the lowest mean absolute error of 0.079 in metal regions and the highest peak signal-to-noise ratio of 42.346 in CBCT projections. At the end, the efficiency of metal-conscious embedding on both simulated and real cadaver CBCT data has been demonstrated, where the inpainting capability of the baseline network has been enhanced.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源