论文标题

kummer表面家族的较高的盘子周期

Higher Chow cycles on a family of Kummer surfaces

论文作者

Sato, Ken

论文摘要

我们在二维Kummer表面家族中构建了一组$(2,1)$(2,1)$的较高的家族,并证明对于非常普通的成员,他们在高等乔集团的不可分解的一部分中产生了等级$ \ ge 18 $的子组。周期的构建对家庭采取有限的小组行动,其线性独立性的证明使用Picard-fuchs差异操作员。

We construct a collection of families of higher Chow cycles of type $(2,1)$ on a 2-dimensional family of Kummer surfaces, and prove that for a very general member, they generate a subgroup of rank $\ge 18$ in the indecomposable part of the higher Chow group. Construction of the cycles uses a finite group action on the family, and the proof of their linear independence uses Picard-Fuchs differential operators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源