论文标题

在更高维点的一般位置上

On higher dimensional point sets in general position

论文作者

Suk, Andrew, Zeng, Ji

论文摘要

如果$ \ mathbb {r}^d $中的有限点设置为一般位置,则如果没有$ d + 1 $点位于公共超平面上。令$α_d(n)$为最大的整数,以便在$ \ mathbb {r}^d $中的任何$ n $点,no $ d + 2 $成员在公共超平面上,其中包含一般位置的$α_d(n)$的子集。使用超图容器的方法,Balogh和Solymosi表明$α_2(n)<n^{5/6 + o(1)} $。在本文中,我们还使用容器方法在$ d \ geq 3 $时获得$α_d(n)$的新上限。更准确地说,我们表明,如果$ d $很奇怪,则$α_d(n)<n^{\ frac {1} {2} {2} + \ frac {1} {2d} + o(1)} $ \ frac {1} {d-1} + o(1)} $。 我们还研究了从网格$ [n]^d $中选择的最大数字$ a(d,k,n)$的经典问题,以使得没有$ k + 2 $成员躺在$ k $ -flat上。对于固定的$ d $和$ k $,我们表明\ begin {equation*} a(d,k,n)\ leq o \ left(n^{\ frac {d} {2 \ lfloor(k+2)/4 \ rfloor}(1- \ frac {1} {1} {2 \ lfloor(k+2)/4 \ rfloor d+1} $ o \ left(n^{\ frac {d} {\ lfloor(k + 2)/2 \ rfloor}} \ right)$ bount lefmann,当$ k + 2 $符合0或1 mod 4时。

A finite point set in $\mathbb{R}^d$ is in general position if no $d + 1$ points lie on a common hyperplane. Let $α_d(N)$ be the largest integer such that any set of $N$ points in $\mathbb{R}^d$ with no $d + 2$ members on a common hyperplane, contains a subset of size $α_d(N)$ in general position. Using the method of hypergraph containers, Balogh and Solymosi showed that $α_2(N) < N^{5/6 + o(1)}$. In this paper, we also use the container method to obtain new upper bounds for $α_d(N)$ when $d \geq 3$. More precisely, we show that if $d$ is odd, then $α_d(N) < N^{\frac{1}{2} + \frac{1}{2d} + o(1)}$, and if $d$ is even, we have $α_d(N) < N^{\frac{1}{2} + \frac{1}{d-1} + o(1)}$. We also study the classical problem of determining the maximum number $a(d,k,n)$ of points selected from the grid $[n]^d$ such that no $k + 2$ members lie on a $k$-flat. For fixed $d$ and $k$, we show that \begin{equation*} a(d,k,n)\leq O\left(n^{\frac{d}{2\lfloor (k+2)/4\rfloor}(1-\frac{1}{2\lfloor(k+2)/4\rfloor d+1})}\right), \end{equation*} which improves the previously best known bound of $O\left(n^{\frac{d}{\lfloor (k + 2)/2\rfloor}}\right)$ due to Lefmann when $k+2$ is congruent to 0 or 1 mod 4.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源