论文标题

通过疾病死亡模型的替代验证,以实现事件的结果

Surrogacy Validation for Time-to-Event Outcomes with Illness-Death Frailty Models

论文作者

Roberts, Emily K., Elliott, Michael R., Taylor, Jeremy M. G.

论文摘要

临床试验中的一种常见做法是,当感兴趣的真实结果很难或昂贵时,评估对中间终点的治疗效果。我们考虑如何在试验结果是事件时间时以因果关系验证中间端点。使用反事实结果,如果给予反事实治疗的结果,因果关系范式评估了治疗效果对替代$ s $的关系与对真实端点$ t $的治疗效果的关系。特别是,我们提出了疾病死亡模型,以适应生存数据的审查和半竞争风险结构。这些模型的拟议因果版本涉及可估计和反事实脆弱的术语。通过这些多状态模型,我们表征有效的替代物看起来会使用因果效应预测图。我们使用马尔可夫链蒙特卡洛(Monte Carlo)评估贝叶斯方法的估计特性,并评估我们的模型假设的敏感性。我们激励的数据来源是一项局部前列腺癌临床试验,其中两个生存终点是远处转移和死亡时间的时候。

A common practice in clinical trials is to evaluate a treatment effect on an intermediate endpoint when the true outcome of interest would be difficult or costly to measure. We consider how to validate intermediate endpoints in a causally-valid way when the trial outcomes are time-to-event. Using counterfactual outcomes, those that would be observed if the counterfactual treatment had been given, the causal association paradigm assesses the relationship of the treatment effect on the surrogate $S$ with the treatment effect on the true endpoint $T$. In particular, we propose illness death models to accommodate the censored and semi-competing risk structure of survival data. The proposed causal version of these models involves estimable and counterfactual frailty terms. Via these multi-state models, we characterize what a valid surrogate would look like using a causal effect predictiveness plot. We evaluate the estimation properties of a Bayesian method using Markov Chain Monte Carlo and assess the sensitivity of our model assumptions. Our motivating data source is a localized prostate cancer clinical trial where the two survival endpoints are time to distant metastasis and time to death.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源