论文标题
用于基于耐火性的多原则合金的延展性度量
A ductility metric for refractory-based multi-principal-element alloys
论文作者
论文摘要
我们提出了一种量子力学无量纲度量,即局部$ - $晶格扭曲(LLD),作为难治性多原则合金(RMPEAS)中延性的可靠预测指标。 LLD度量是基于局部化学环境中的电负性差异,并将原子$ - $比例位移结合在一起,这是由于本地晶格畸变和加权平均价$ - $ $电子数量的。为了评估该指标的有效性,我们检查了身体$ - $中心立方(BCC)耐火合金,这些合金表现出延性$ - $ - $ - $ - $ - $ - $ - $ - $ - $ brittle行为。我们的发现表明,可以通过组成来调整本地$ - $收费行为,以增强rmpeas的延展性。随着有限$ - $尺寸的细胞效应,LLD度量准确地预测了基于拉伸$ - $伸长实验的任意合金的延展性。为了进一步验证,我们定性地评估了两个耐火rmpeas的延展性,即nbtamow和mo $ $ _ {72} $ w $ _ {13} ta $ _ {10} ti $ _ {2.5} Zr $ _ {2.5} Zr $ _ {2.5},通过观察到裂纹形式,再次证明了Crack Indentation corportion crack Indentation lld corportion n n dell Indentation lld corport。对三种难治性合金的比较研究提供了对难治性rmpeas延性的电子结构起源的进一步见解。该提出的指标能够快速准确评估广泛的RMPEA组成空间中的延展性行为。
We propose a quantum-mechanical dimensionless metric, the local$-$lattice distortion (LLD), as a reliable predictor of ductility in refractory multi-principal-element alloys (RMPEAs). The LLD metric is based on electronegativity differences in localized chemical environments and combines atomic$-$scale displacements due to local lattice distortions with a weighted average of valence$-$electron count. To evaluate the effectiveness of this metric, we examined body$-$centered cubic (bcc) refractory alloys that exhibit ductile$-$to$-$brittle behavior. Our findings demonstrate that local$-$charge behavior can be tuned via composition to enhance ductility in RMPEAs. With finite$-$sized cell effects eliminated, the LLD metric accurately predicted the ductility of arbitrary alloys based on tensile$-$elongation experiments. To validate further, we qualitatively evaluated the ductility of two refractory RMPEAs, i.e., NbTaMoW and Mo$_{72}$W$_{13}Ta$_{10}Ti$_{2.5}Zr$_{2.5}, through the observation of crack formation under indentation, again showing excellent agreement with LLD predictions. A comparative study of three refractory alloys provides further insights into the electronic-structure origin of ductility in refractory RMPEAs. This proposed metric enables rapid and accurate assessment of ductility behavior in the vast RMPEA composition space.