论文标题
第一原理的半导体的温度依赖性全光谱响应
Temperature-Dependent Full Spectrum Optical Responses of Semiconductors from First Principles
论文作者
论文摘要
从紫外线到中红外区域,半导体中的轻度相互作用机制逐渐从电子过渡到声音共振,并受到温度的影响。在这里,我们完全由第一原理对电子和声子进行平行温度依赖性处理,从而可以预测全光谱光学响应。在升高的温度下,使用$ \ textit {ab intio} $分子动力学来寻找对电子结构的热扰动,并构建描述潜在景观的有效力常数。在这种方法中,以综合方式包括四个子散射和声子重归其化。作为一种原型陶瓷材料,这项工作考虑了二氧化衣(CEO $ _2 $)。我们的第一原理计算出的CEO $ _2 $的折射率与文献中的测量数据和我们自己的温度依赖性椭圆机实验非常吻合。
From ultraviolet to mid-infrared region, light-matter interaction mechanisms in semiconductors progressively shift from electronic transitions to phononic resonances and are affected by temperature. Here, we present a parallel temperature-dependent treatment of both electrons and phonons entirely from first principles, enabling the prediction of full-spectrum optical responses. At elevated temperatures, $\textit{ab initio}$ molecular dynamics is employed to find thermal perturbations to electronic structures and construct effective force constants describing potential landscape. Four-phonon scattering and phonon renormalization are included in an integrated manner in this approach. As a prototype ceramic material, cerium dioxide (CeO$_2$) is considered in this work. Our first-principles calculated refractive index of CeO$_2$ agrees well with measured data from literature and our own temperature-dependent ellipsometer experiment.