论文标题

与$ \ mathsf {r} $一致的理论的不完整和不确定性

Incompleteness and undecidability of theories consistent with $\mathsf{R}$

论文作者

Kurahashi, Taishi

论文摘要

我们证明了以下版本的第一个不完整定理,同时增强了Mostowski的定理和Vaught的定理:对于任何C.E.一致的tarski,Mostowski和Robinson's Arithmetic $ \ Mathsf {r} $的一致扩展的家庭$ \ { \nvdashφ$和$ t_i \ nvdash \negφ$。

We prove the following version of the first incompleteness theorem that simultaneously strengthens Mostowski's theorem and Vaught's theorem: For any c.e. family $\{ T_i \}_{i \in ω}$ of consistent extensions of Tarski, Mostowski and Robinson's arithmetic $\mathsf{R}$, there exists a sentence $φ$ of arithmetic such that $φ\vdash \mathsf{R}$ and for all $i \in ω$, $T_i \nvdash φ$ and $T_i \nvdash \neg φ$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源