论文标题

fMRI时序数据的MP-PCA降级可以导致人工激活“扩散”

MP-PCA denoising of fMRI time-series data can lead to artificial activation "spreading"

论文作者

Fernandes, Francisca F., Olesen, Jonas L., Jespersen, Sune N., Shemesh, Noam

论文摘要

MP-PCA DeNoising已成为MRI中脱氧的首选方法,因为它提供了一个客观的阈值,可以将所需信号与不需要的热噪声组件分开。在啮齿动物中,线圈中的热噪声是可以降低fMRI中激活映射的准确性的重要噪声来源。进一步困惑了这个问题,供应商数据通常包含零填充和其他可能违反MP-PCA假设的效果。在这里,我们开发了一种方法来代诺供应商数据,并评估由MP-PCA基于啮齿动物的fMRI数据中的MP-PCA引起的激活“扩散”。在视觉刺激期间,使用常规的多层采集(分别为1 s和50 ms的时间分辨率),从n = 3小鼠(分别为1 s和50 ms)获得数据。 MP-PCA denoing的SNR增益为64%和39%,傅立叶光谱振幅(FSA)的大胆地图分别增加了9%和7%,用于多层和超快数据,当使用小[2] DeNoising窗口时。较大的窗户提供了更高的SNR和FSA增益,并增加了可能代表实际激活的空间激活程度。模拟表明,MP-PCA降级会导致激活“扩散”,假阳性速率的增加,并且由于主要成分的局部“出血”而导致的功能图,并且基于数据的TSNR和功能CNR的局部功能映射的最佳denoising窗口,取决于数据的分数计算。这种“扩散”效果也适用于最近提出的另一种低级denoising方法(北欧)。我们的结果bode良好,可以在未来的fMRI工作中显着增强空间和/或时间分辨率,同时考虑到低级别denoising方法的敏感性/特异性权衡。

MP-PCA denoising has become the method of choice for denoising in MRI since it provides an objective threshold to separate the desired signal from unwanted thermal noise components. In rodents, thermal noise in the coils is an important source of noise that can reduce the accuracy of activation mapping in fMRI. Further confounding this problem, vendor data often contains zero-filling and other effects that may violate MP-PCA assumptions. Here, we develop an approach to denoise vendor data and assess activation "spreading" caused by MP-PCA denoising in rodent task-based fMRI data. Data was obtained from N = 3 mice using conventional multislice and ultrafast acquisitions (1 s and 50 ms temporal resolution, respectively), during visual stimulation. MP-PCA denoising produced SNR gains of 64% and 39% and Fourier spectral amplitude (FSA) increases in BOLD maps of 9% and 7% for multislice and ultrafast data, respectively, when using a small [2 2] denoising window. Larger windows provided higher SNR and FSA gains with increased spatial extent of activation that may or may not represent real activation. Simulations showed that MP-PCA denoising causes activation "spreading" with an increase in false positive rate and smoother functional maps due to local "bleeding" of principal components, and that the optimal denoising window for improved specificity of functional mapping, based on Dice score calculations, depends on the data's tSNR and functional CNR. This "spreading" effect applies also to another recently proposed low-rank denoising method (NORDIC). Our results bode well for dramatically enhancing spatial and/or temporal resolution in future fMRI work, while taking into account the sensitivity/specificity trade-offs of low-rank denoising methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源