论文标题

有界变化空间,具有与图像DeNoing相关的广义Orlicz生长

Bounded variation spaces with generalized Orlicz growth related to image denoising

论文作者

Eleuteri, Michela, Harjulehto, Petteri, Hästö, Peter

论文摘要

由图像降解问题和总变化方法的不良楼梯射击效应的动机,我们引入了有界变化空间,并具有广义的Orlicz增长。我们的设置涵盖了早期的变量指数和双相模型。我们研究新空间的规范和模块化,并根据衍生物度量的Lebesgue分解和位置依赖衰退函数得出模块化的公式。我们还表明,该模块可以作为均匀凸出近似能量的$γ$限制。

Motivated by the image denoising problem and the undesirable stair-casing effect of the total variation method, we introduce bounded variation spaces with generalized Orlicz growth. Our setup covers earlier variable exponent and double phase models. We study the norm and modular of the new space and derive a formula for the modular in terms of the Lebesgue decomposition of the derivative measure and a location dependent recession function. We also show that the modular can be obtained as the $Γ$-limit of uniformly convex approximating energies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源