论文标题

宇宙学领域的非高斯田地,并具有标准化流量

De-noising non-Gaussian fields in cosmology with normalizing flows

论文作者

Rouhiainen, Adam, Münchmeyer, Moritz

论文摘要

宇宙学中的领域(例如物质分布)是通过实验到实验噪声的实验观察到的。宇宙学数据分析的第一步通常是使用先验的分析或模拟驱动的观察到的场。在足够大的尺度上,这样的磁场是高斯,而拖延的步骤被称为维纳滤波。但是,在通过即将进行的实验探测的较小尺度上,高斯先验基本上是最佳的,因为真实的场分布非常非高斯。使用归一化的流,可以通过模拟(或从更高分辨率的观察结果)学习非高斯先验,并使用此知识更有效地降低数据。我们表明,我们可以训练流动以表示宇宙的物质分布,并评估在理想化条件下可以将多少信噪比纳入噪声。我们还引入了一种补丁方法,通过将它们分成小图(我们重建非高斯特征),并将小小的后验图将其划分为大型图像(在大尺度上(场是高斯)。

Fields in cosmology, such as the matter distribution, are observed by experiments up to experimental noise. The first step in cosmological data analysis is usually to de-noise the observed field using an analytic or simulation driven prior. On large enough scales, such fields are Gaussian, and the de-noising step is known as Wiener filtering. However, on smaller scales probed by upcoming experiments, a Gaussian prior is substantially sub-optimal because the true field distribution is very non-Gaussian. Using normalizing flows, it is possible to learn the non-Gaussian prior from simulations (or from more high-resolution observations), and use this knowledge to de-noise the data more effectively. We show that we can train a flow to represent the matter distribution of the universe, and evaluate how much signal-to-noise can be gained as a function of the experimental noise under idealized conditions. We also introduce a patching method to reconstruct fields on arbitrarily large images by dividing them up into small maps (where we reconstruct non-Gaussian features), and patching the small posterior maps together on large scales (where the field is Gaussian).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源