论文标题

使用普朗克CMB温度和极化对原始功率谱的自由形式重建

Free-form reconstruction of primordial power spectrum using Planck CMB temperature and polarization

论文作者

Sohn, Wuhyun, Shafieloo, Arman, Hazra, Dhiraj Kumar

论文摘要

尽管最简单的通货膨胀模型预测原始扰动是接近尺度不变的,但原始功率谱(PPS)可以在许多物理动机的模型中表现出振荡特征。我们通过基于\ textit {planck} 2018 CMB温度和极化各向异性的PPS自由形式重建来搜索此类功能的提示。为了稳健地倒转振荡积分并处理噪音无上线的数据,我们从图像分析技术中汲取灵感。在以前的作品中,用于去缩合图像的Richardson-Lucy反卷积算法已被修改,用于重建CMB温度角功率谱的PPS。我们通过包括CMB极化并引入两种新的正则化技术来广泛开发方法,这也受图像分析的启发,并适合我们的宇宙学环境。正则化对于改善温度和极化通道(TT,TE和EE)的拟合至关重要,而无需彼此牺牲。我们获得的重建与以前仅温度分析的发现一致。我们使用模拟数据评估了重建中振荡特征的统计学意义,并发现观察结果与具有无功能的PPS一致。这里开发的机械将是搜索即将进行的CMB调查的功能的免费工具。我们的方法还显示了图像反卷积任务的竞争性能,这些任务具有从显微镜到医学成像的各种应用。

While the simplest inflationary models predict the primordial perturbations to be near scale-invariant, the primordial power spectrum (PPS) can exhibit oscillatory features in many physically well-motivated models. We search for hints of such features via free-form reconstructions of the PPS based on \textit{Planck} 2018 CMB temperature and polarization anisotropies. In order to robustly invert the oscillatory integrals and handle noisy unbinned data, we draw inspiration from image analysis techniques. In previous works, the Richardson-Lucy deconvolution algorithm for deblurring images has been modified for reconstructing PPS from the CMB temperature angular power spectrum. We extensively develop the methodology by including CMB polarization and introducing two new regularization techniques, also inspired by image analysis and adapted for our cosmological context. Regularization is essential for improving the fit to the temperature and polarization channels (TT, TE and EE) simultaneously without sacrificing one for another. The reconstructions we obtain are consistent with previous findings from temperature-only analyses. We evaluate the statistical significance of the oscillatory features in our reconstructions using mock data and find the observations to be consistent with having a featureless PPS. The machinery developed here will be a complimentary tool in the search for features with upcoming CMB surveys. Our methodology also shows competitive performance in image deconvolution tasks, which have various applications from microscopy to medical imaging.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源