论文标题
部分可观测时空混沌系统的无模型预测
Bulk--Boundary Correspondence and Boundary Zero Modes in a Non-Hermitian Kitaev Chain Model
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We study a non-Hermitian Kitaev chain model that contains three sources of non-Hermiticity: a constant imaginary potential, asymmetry between hopping amplitudes $t_{\rm R}$ and $t_{\rm L}$ in the right and left directions, and imbalance in pair potentials $Δ_{\rm c}$ and $Δ_{\rm a}$ for pair creation and annihilation, respectively. We show that bulk--boundary correspondence holds in this system; two topological invariants defined in bulk geometry under a modified periodic boundary condition correctly describe the presence or absence of a pair of boundary zero modes in boundary geometry under an open boundary condition. One topological invariant characterizes a topologically nontrivial phase with a line gap and the other characterizes that with a point gap. The latter appears only in the asymmetric hopping case of $t_{\rm R} \neq t_{\rm L}$. These two nontrivial phases are essentially equivalent except for their gap structures. Indeed, the boundary zero modes do not disappear across the boundary between them. We also show that the boundary zero modes do not satisfy the Majorana condition if $Δ_{\rm c} \neq Δ_{\rm a}$ and/or $t_{\rm R} \neq t_{\rm L}$.