论文标题

部分可观测时空混沌系统的无模型预测

A Knowledge-based Learning Framework for Self-supervised Pre-training Towards Enhanced Recognition of Biomedical Microscopy Images

论文作者

Chen, Wei, Li, Chen, Chen, Dan, Luo, Xin

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Self-supervised pre-training has become the priory choice to establish reliable neural networks for automated recognition of massive biomedical microscopy images, which are routinely annotation-free, without semantics, and without guarantee of quality. Note that this paradigm is still at its infancy and limited by closely related open issues: 1) how to learn robust representations in an unsupervised manner from unlabelled biomedical microscopy images of low diversity in samples? and 2) how to obtain the most significant representations demanded by a high-quality segmentation? Aiming at these issues, this study proposes a knowledge-based learning framework (TOWER) towards enhanced recognition of biomedical microscopy images, which works in three phases by synergizing contrastive learning and generative learning methods: 1) Sample Space Diversification: Reconstructive proxy tasks have been enabled to embed a priori knowledge with context highlighted to diversify the expanded sample space; 2) Enhanced Representation Learning: Informative noise-contrastive estimation loss regularizes the encoder to enhance representation learning of annotation-free images; 3) Correlated Optimization: Optimization operations in pre-training the encoder and the decoder have been correlated via image restoration from proxy tasks, targeting the need for semantic segmentation. Experiments have been conducted on public datasets of biomedical microscopy images against the state-of-the-art counterparts (e.g., SimCLR and BYOL), and results demonstrate that: TOWER statistically excels in all self-supervised methods, achieving a Dice improvement of 1.38 percentage points over SimCLR. TOWER also has potential in multi-modality medical image analysis and enables label-efficient semi-supervised learning, e.g., reducing the annotation cost by up to 99% in pathological classification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源