论文标题

部分可观测时空混沌系统的无模型预测

Identifying Chemicals Through Dimensionality Reduction

论文作者

Anand, Emile, Steinhardt, Charles, Hansen, Martin

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Civilizations have tried to make drinking water safe to consume for thousands of years. The process of determining water contaminants has evolved with the complexity of the contaminants due to pesticides and heavy metals. The routine procedure to determine water safety is to use targeted analysis which searches for specific substances from some known list; however, we do not explicitly know which substances should be on this list. Before experimentally determining which substances are contaminants, how do we answer the sampling problem of identifying all the substances in the water? Here, we present an approach that builds on the work of Jaanus Liigand et al., which used non-targeted analysis that conducts a broader search on the sample to develop a random-forest regression model, to predict the names of all the substances in a sample, as well as their respective concentrations[1]. This work utilizes techniques from dimensionality reduction and linear decompositions to present a more accurate model using data from the European Massbank Metabolome Library to produce a global list of chemicals that researchers can then identify and test for when purifying water.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源