论文标题
文本表示方法及其家谱的调查
A Survey of Text Representation Methods and Their Genealogy
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In recent years, with the advent of highly scalable artificial-neural-network-based text representation methods the field of natural language processing has seen unprecedented growth and sophistication. It has become possible to distill complex linguistic information of text into multidimensional dense numeric vectors with the use of the distributional hypothesis. As a consequence, text representation methods have been evolving at such a quick pace that the research community is struggling to retain knowledge of the methods and their interrelations. We contribute threefold to this lack of compilation, composition, and systematization by providing a survey of current approaches, by arranging them in a genealogy, and by conceptualizing a taxonomy of text representation methods to examine and explain the state-of-the-art. Our research is a valuable guide and reference for artificial intelligence researchers and practitioners interested in natural language processing applications such as recommender systems, chatbots, and sentiment analysis.