论文标题

通过统一表示和行为蒸馏的形态任务概括系统

A System for Morphology-Task Generalization via Unified Representation and Behavior Distillation

论文作者

Furuta, Hiroki, Iwasawa, Yusuke, Matsuo, Yutaka, Gu, Shixiang Shane

论文摘要

自然语言和视野中通才大规模模型的兴起使我们期望大规模的数据驱动方法可以在其他领域(例如持续控制)中实现更广泛的概括。在这项工作中,我们探讨了一种学习单个策略的方法,该策略通过提炼大量熟练的行为数据来操纵各种形式的代理来解决各种任务。为了使多个任务和多样的代理形态之间的输入输出(IO)接口保持在保留基本的3D几何关系时,我们介绍了形态任务图,该图形将统一图表示的观察,动作和目标/任务处理。我们还为快速大规模的行为生成开发了MXT板凳,该基础的蓝图和硬件加速模拟器的过程生成不同的形态任务组合。通过在MXT基础上的有效表示和体系结构的选择,我们发现与其他基线相比,与其他基线相比,与变压器结构结合使用的形态任务图表表示可以改善多任务性能,并提供更好的先验知识,以提供更好的先验知识,以了解下游多任务多任务的零击效率或样品效率。我们的工作表明,通过监督学习形成了一种有前途的研究和推进形态任务概括的有前途的方法,提出了大量不同的离线数据集,统一的IO表示以及政策表示和建筑选择。

The rise of generalist large-scale models in natural language and vision has made us expect that a massive data-driven approach could achieve broader generalization in other domains such as continuous control. In this work, we explore a method for learning a single policy that manipulates various forms of agents to solve various tasks by distilling a large amount of proficient behavioral data. In order to align input-output (IO) interface among multiple tasks and diverse agent morphologies while preserving essential 3D geometric relations, we introduce morphology-task graph, which treats observations, actions and goals/task in a unified graph representation. We also develop MxT-Bench for fast large-scale behavior generation, which supports procedural generation of diverse morphology-task combinations with a minimal blueprint and hardware-accelerated simulator. Through efficient representation and architecture selection on MxT-Bench, we find out that a morphology-task graph representation coupled with Transformer architecture improves the multi-task performances compared to other baselines including recent discrete tokenization, and provides better prior knowledge for zero-shot transfer or sample efficiency in downstream multi-task imitation learning. Our work suggests large diverse offline datasets, unified IO representation, and policy representation and architecture selection through supervised learning form a promising approach for studying and advancing morphology-task generalization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源