论文标题

$ t_4 $配置的非含量为双曲线系统和LIU熵条件

Nonexistence of $T_4$ configurations for hyperbolic systems and the Liu entropy condition

论文作者

Krupa, Sam G., Székelyhidi Jr, László

论文摘要

我们研究由$ 2 \ times 2 $在一个空间维度中的$ 2 \ times 2 $的保护法系统产生的本构集$ \ Mathcal {k} $,并带有一个熵和熵 - 频率对。集合$ \ MATHCAL {k} $的凸度属性与基础系统的适合度有关,以及通过凸集成构建解决方案的能力。与$ \ Mathcal {k} $的凸度有关,在$ p $ SYSTEM,LORENT和PENG的特殊情况下[Calc。 var。部分微分方程,59(5):纸编号156、36、2020]表明$ \ MATHCAL {K} $不包含$ T_4 $配置。最近,Johansson和Tione [Arxiv e-prints,Page arXiv:2208.10979,2022年8月]显示$ \ Mathcal {K} $不包含$ T_5 $配置。 在本文中,我们基于对大型$ 2 \ times 2 $系统的冲击曲线的仔细分析,对这些结果进行了实质性的概括。特别是,我们在通用系统上提供了几组假设,这些假设可用于排除本构设置$ \ Mathcal {K k} $中$ T_4 $配置的存在。特别是,我们的结果表明,对于每一个众所周知的$ 2 \ times 2 $夸张的保护法律,$ T_4 $配置不存在,该系统验证了LIU熵条件。

We study the constitutive set $\mathcal{K}$ arising from a $2\times 2$ system of conservation laws in one space dimension, endowed with one entropy and entropy-flux pair. The convexity properties of the set $\mathcal{K}$ relate to the well-posedness of the underlying system and the ability to construct solutions via convex integration. Relating to the convexity of $\mathcal{K}$, in the particular case of the $p$-system, Lorent and Peng [Calc. Var. Partial Differential Equations, 59(5):Paper No. 156, 36, 2020] show that $\mathcal{K}$ does not contain $T_4$ configurations. Recently, Johansson and Tione [arXiv e-prints, page arXiv:2208.10979, August 2022] showed that $\mathcal{K}$ does not contain $T_5$ configurations. In this paper, we provide a substantial generalization of these results, based on a careful analysis of the shock curves for a large class of $2\times 2$ systems. In particular, we provide several sets of hypothesis on general systems which can be used to rule out the existence of $T_4$ configurations in the constitutive set $\mathcal{K}$. In particular, our results show the nonexistence of $T_4$ configurations for every well-known $2\times 2$ hyperbolic system of conservation laws which verifies the Liu entropy condition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源