论文标题

HMMTMB:隐藏的马尔可夫模型在R中具有灵活的协变量效应

hmmTMB: hidden Markov models with flexible covariate effects in R

论文作者

Michelot, Théo

论文摘要

隐藏的马尔可夫模型(HMM)广泛应用于间接观察到的离散价值过程的研究。例如,它们已被用来对人类和动物跟踪数据,医疗数据的疾病状况以及股票价格的金融市场波动来建模行为。该模型有两个主要参数集:驱动潜在状态过程的过渡概率和观察参数,这些参数表征了观察到的变量的状态依赖性分布。 HMM的一个特别有用的扩展是在这些参数上包含协变量,以研究状态过渡的驱动因素或实施马尔可夫转换回归模型。我们介绍了用于HMM分析的新R软件包HMMTMB,在隐藏状态和观察参数中都具有灵活的协变量模型。特别是,非线性效应是使用惩罚的花纹(包括多个单变量和多变量花样)实施的,并具有自动平滑度选择。该软件包允许各种随机效应公式(包括随机截距和斜率)捕获组间异质性。 HMMTMB可以应用于多元观察结果,并适用于各种类型的响应数据,包括连续(有限的),离散和二进制变量。参数约束可用于实现非标准依赖性结构,例如半马尔可夫,高阶马尔可夫和自回归模型。在这里,我们总结了相关的统计方法,我们描述了软件包的结构,并提供了动物跟踪数据的示例分析,以展示包装的工作流程。

Hidden Markov models (HMMs) are widely applied in studies where a discrete-valued process of interest is observed indirectly. They have for example been used to model behaviour from human and animal tracking data, disease status from medical data, and financial market volatility from stock prices. The model has two main sets of parameters: transition probabilities, which drive the latent state process, and observation parameters, which characterise the state-dependent distributions of observed variables. One particularly useful extension of HMMs is the inclusion of covariates on those parameters, to investigate the drivers of state transitions or to implement Markov-switching regression models. We present the new R package hmmTMB for HMM analyses, with flexible covariate models in both the hidden state and observation parameters. In particular, non-linear effects are implemented using penalised splines, including multiple univariate and multivariate splines, with automatic smoothness selection. The package allows for various random effect formulations (including random intercepts and slopes), to capture between-group heterogeneity. hmmTMB can be applied to multivariate observations, and it accommodates various types of response data, including continuous (bounded or not), discrete, and binary variables. Parameter constraints can be used to implement non-standard dependence structures, such as semi-Markov, higher-order Markov, and autoregressive models. Here, we summarise the relevant statistical methodology, we describe the structure of the package, and we present an example analysis of animal tracking data to showcase the workflow of the package.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源