论文标题
在图像上使用生成对抗网络检测异常
Detecting Anomalies using Generative Adversarial Networks on Images
论文作者
论文摘要
自动检测诸如行李安全中的武器或威胁物体之类的异常情况,或在工业生产中检测受损项目是一项重要的计算机视觉任务,要求高效和准确性。由于正/异常实例的数量很少,因此在异常检测任务中的大多数可用数据都是不平衡的。数据的可用性不足,可以使深度神经网络体系结构培训针对异常检测具有挑战性。本文提出了一种基于新颖的生成对抗网络(GAN)用于异常检测的模型。它使用正常(非反对)图像来了解基于检测到输入图像是否包含异常/威胁对象的正态性。所提出的模型使用具有密集卷积跳过连接的编码器码头网络的发电机,以增强重建并捕获数据分布。自我发挥的增强歧视器的使用能够检查即使在遥远的部分中,也可以检查详细特征的一致性。我们使用光谱归一化来促进稳定和改进的GAN训练。实验是在三个数据集上进行的,即。 CIFAR-10,MVTEC广告(用于工业应用)和Sixra(用于X射线行李安全)。在MVTEC AD和SIXRAY数据集上,我们的模型分别提高了21%和4.6%
Automatic detection of anomalies such as weapons or threat objects in baggage security, or detecting impaired items in industrial production is an important computer vision task demanding high efficiency and accuracy. Most of the available data in the anomaly detection task is imbalanced as the number of positive/anomalous instances is sparse. Inadequate availability of the data makes training of a deep neural network architecture for anomaly detection challenging. This paper proposes a novel Generative Adversarial Network (GAN) based model for anomaly detection. It uses normal (non-anomalous) images to learn about the normality based on which it detects if an input image contains an anomalous/threat object. The proposed model uses a generator with an encoder-decoder network having dense convolutional skip connections for enhanced reconstruction and to capture the data distribution. A self-attention augmented discriminator is used having the ability to check the consistency of detailed features even in distant portions. We use spectral normalisation to facilitate stable and improved training of the GAN. Experiments are performed on three datasets, viz. CIFAR-10, MVTec AD (for industrial applications) and SIXray (for X-ray baggage security). On the MVTec AD and SIXray datasets, our model achieves an improvement of upto 21% and 4.6%, respectively