论文标题
重新调整了哈迪的悖论
Realigned Hardy's Paradox
论文作者
论文摘要
Hardy的悖论提供了一种全面的方式,可以直接证明量子力学不能由当地现实理论完全描述。但是,当考虑实验中的潜在缺陷(例如不完美的纠缠源和低检测效率)时,原始的Hardy的悖论可能会引起相当小的耐力违规行为,并且只能通过昂贵的量子系统实现。为了克服这个问题,我们提出了一个重新调整的Hardy悖论。与Hardy的悖论的原始版本相比,重新调整的Hardy悖论可以极大地改善Hardy违规行为。然后,我们将重新调整的Hardy悖论推广到任意$ N $ DiCHOTOMIC测量值。对于$ n = 2 $和$ n = 4 $的情况,重新调整的Hardy的悖论可以达到Hardy值$ P(00 | A_1B_1)$大约$ 0.4140 $和$ 0.7734 $,而原始Hardy的Paradox的$ 0.09 $。同时,在只有一个强硬条件而不是三个条件的意义上,重新调整的Hardy悖论的结构更简单,更健壮。可以预料,重新调整的Hardy悖论可以忍受更多的实验缺陷,并刺激更引人入胜的量子信息应用。
Hardy's paradox provides an all-versus-nothing fashion to directly certify that quantum mechanics cannot be completely described by local realistic theory. However, when considering potential imperfections in experiments, like imperfect entanglement source and low detection efficiency, the original Hardy's paradox may induce a rather small Hardy violation and only be realized by expensive quantum systems. To overcome this problem, we propose a realigned Hardy's paradox. Compared with the original version of Hardy's paradox, the realigned Hardy's paradox can dramatically improve the Hardy violation. Then, we generalize the realigned Hardy's paradox to arbitrary even $n$ dichotomic measurements. For $n=2$ and $n=4$ cases, the realigned Hardy's paradox can achieve Hardy values $P(00|A_1B_1)$ approximate $0.4140$ and $0.7734$ respectively compared with $0.09$ of the original Hardy's paradox. Meanwhile, the structure of the realigned Hardy's paradox is simpler and more robust in the sense that there is only one Hardy condition rather than three conditions. One can anticipate that the realigned Hardy's paradox can tolerate more experimental imperfections and stimulate more fascinating quantum information applications.