论文标题
右角无对比度可穿透楔的衍射:光谱函数的分析延续
Diffraction by a Right-Angled No-Contrast Penetrable Wedge: Analytical Continuation of Spectral Functions
论文作者
论文摘要
我们通过两种可变的维纳 - hopf方法来研究通过右角无对解楔的衍射问题。具体而言,研究了两个复合变量的Wiener-HOPF方程的未知(光谱)函数的分析性能。我们表明,这些频谱函数可以在分析上继续到两个复杂的维歧管上,并在$ \ mathbb {c}^2 $中揭示其奇异性。为此,给出并充分使用光谱函数的整体表示公式。结果表明,新颖的添加剂交叉概念适用于可穿透的楔形衍射问题,并且我们可以使用此概念将物理衍射问题重新制定为功能问题。
We study the problem of diffraction by a right-angled no-contrast penetrable wedge by means of a two-complex-variable Wiener-Hopf approach. Specifically, the analyticity properties of the unknown (spectral) functions of the two-complex-variable Wiener-Hopf equation are studied. We show that these spectral functions can be analytically continued onto a two-complex dimensional manifold, and unveil their singularities in $\mathbb{C}^2$. To do so, integral representation formulae for the spectral functions are given and thoroughly used. It is shown that the novel concept of additive crossing holds for the penetrable wedge diffraction problem and that we can reformulate the physical diffraction problem as a functional problem using this concept.