论文标题

在签名的加密货币信任网络中,用于欺诈检测的图案感知的时间GCN

Motif-aware temporal GCN for fraud detection in signed cryptocurrency trust networks

论文作者

Li, Song, Zhou, Jiandong, MO, Chong, LI, Jin, Tso, Geoffrey K. F., Tian, Yuxing

论文摘要

图形卷积网络(GCN)是一类人工神经网络,用于处理可以表示为图形的数据。由于金融交易自然可以用作图形,因此GCN被广泛应用于金融行业,尤其​​是用于金融欺诈检测。在本文中,我们重点介绍了有关加密货币网络的欺诈检测。在文献中,大多数作品都集中在静态网络上。尽管在这项研究中,我们考虑了加密货币网络的不断发展的性质,并使用局部结构以及平衡理论来指导训练过程。更具体地说,我们计算基序矩阵以捕获局部拓扑信息,然后在GCN聚合过程中使用它们。每个快照处的生成的嵌入是在一个时间窗口内的加权平均值,其中权重是可学习的参数。由于信任网络在每个边缘上都签署,因此平衡理论用于指导培训过程。比特币-Alpha和比特币-OTC数据集的实验结果表明,所提出的模型优于文献中的模型。

Graph convolutional networks (GCNs) is a class of artificial neural networks for processing data that can be represented as graphs. Since financial transactions can naturally be constructed as graphs, GCNs are widely applied in the financial industry, especially for financial fraud detection. In this paper, we focus on fraud detection on cryptocurrency truct networks. In the literature, most works focus on static networks. Whereas in this study, we consider the evolving nature of cryptocurrency networks, and use local structural as well as the balance theory to guide the training process. More specifically, we compute motif matrices to capture the local topological information, then use them in the GCN aggregation process. The generated embedding at each snapshot is a weighted average of embeddings within a time window, where the weights are learnable parameters. Since the trust networks is signed on each edge, balance theory is used to guide the training process. Experimental results on bitcoin-alpha and bitcoin-otc datasets show that the proposed model outperforms those in the literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源