论文标题
非线性扩散的第一学期时间统计数据
First-passage time statistics for non-linear diffusion
论文作者
论文摘要
评估随机算法或运行随机过程的完成时间不仅是纯粹的理论,而且是务实的观点。从正式的意义上讲,这种任务是根据第一学期时间统计数据指定的。尽管通常以不同类型的线性微分方程建模的扩散过程的第一阶段特性是通过不受影化的强度永久探索的,但对于非线性扩散过程的研究,该主题仍然存在明显的利基市场。因此,本文的目的是至少在某种程度上填补这一空白。在这里,我们考虑了非线性扩散方程,其中扩散率是幂律取决于浓度/概率密度,并从第一学期时间统计的角度分析其性质。根据幂律指数的价值,我们证明了生存概率和第一邮器时间分布的确切和近似表达式以及其渐近表示。这些结果是指自由和谐波捕获的扩散粒子。尽管在前一种情况下,平均第一通道时间是不同的,即使第一通道时间分布归一化为统一,但后者是有限的。为了支持这一结果,我们将平均第一分时间时间的确切公式推导到最低谐波电位的目标的目标。
Evaluating the completion time of a random algorithm or a running stochastic process is a valuable tip not only from a purely theoretical, but also pragmatic point of view. In the formal sense, this kind of a task is specified in terms of the first-passage time statistics. Although first-passage properties of diffusive processes, usually modeled by different types of the linear differential equations, are permanently explored with unflagging intensity, there still exists noticeable niche in this subject concerning the study of the non-linear diffusive processes. Therefore, the objective of the present paper is to fill this gap, at least to some extent. Here, we consider the non-linear diffusion equation in which a diffusivity is power-law dependent on the concentration/probability density, and analyse its properties from the viewpoint of the first-passage time statistics. Depending on the value of the power-law exponent, we demonstrate the exact and approximate expressions for the survival probability and the first-passage time distribution along with its asymptotic representation. These results refer to the freely and harmonically trapped diffusing particle. While in the former case the mean first-passage time is divergent, even though the first-passage time distribution is normalized to unity, it is finite in the latter. To support this result, we derive the exact formula for the mean first-passage time to the target prescribed in the minimum of the harmonic potential.