论文标题
平滑的花键以不连续的信号
Smoothing splines for discontinuous signals
论文作者
论文摘要
平滑的花纹是通过构造的两倍,因此它们无法捕获基础信号中的潜在不连续性。在这项工作中,我们考虑了Blake和Zisserman(1987)的弱杆模型的特殊情况,该模型允许不连续性通过线性术语惩罚其数量。相应的估计值是具有不连续性(CSSD)的立方平滑光谱,可作为分段平滑信号的表示,并促进探索性数据分析。但是,计算估计值需要解决非凸优化问题。到目前为止,仅用于基于等级采样数据的离散近似值而存在,因此存在高效且精确的求解器。在这项工作中,我们提出了一个有效的求解器,用于与非均等采样数据的连续最小化问题。它最坏的情况的复杂性是数据点数的二次,如果检测到的不连续性的数量随信号长度线性缩放,我们会观察到运行时线性生长。这种有效的算法允许在标准硬件合理的时间范围内使用交叉验证来自动选择超参数。我们提供参考实施和补充材料。我们使用模拟和真实数据证明了该方法对上述任务的适用性。
Smoothing splines are twice differentiable by construction, so they cannot capture potential discontinuities in the underlying signal. In this work, we consider a special case of the weak rod model of Blake and Zisserman (1987) that allows for discontinuities penalizing their number by a linear term. The corresponding estimates are cubic smoothing splines with discontinuities (CSSD) which serve as representations of piecewise smooth signals and facilitate exploratory data analysis. However, computing the estimates requires solving a non-convex optimization problem. So far, efficient and exact solvers exist only for a discrete approximation based on equidistantly sampled data. In this work, we propose an efficient solver for the continuous minimization problem with non-equidistantly sampled data. Its worst case complexity is quadratic in the number of data points, and if the number of detected discontinuities scales linearly with the signal length, we observe linear growth in runtime. This efficient algorithm allows to use cross validation for automatic selection of the hyperparameters within a reasonable time frame on standard hardware. We provide a reference implementation and supplementary material. We demonstrate the applicability of the approach for the aforementioned tasks using both simulated and real data.