论文标题
测量的Weyl变换
The Weyl Transform of a measure
论文作者
论文摘要
(1)假设$μ$是$ \ r^{2n} $的正曲面上的超出表面上的平滑度量。如果$ n \ ge 2 $,则$ w(μ)$,$μ$的Weyl Transform是紧凑的操作员,如果$ p> n \ ge 6 $ 6 $,则$ w(μ)$属于$ p $ -schatten类。 (2)存在带有线性依赖量子翻译的Schatten类操作员。
(1) Suppose $μ$ is a smooth measure on a hypersurface of positive Gaussian curvature in $\R^{2n}$. If $n\ge 2$, then $W(μ)$, the Weyl transform of $μ$, is a compact operator, and if $p>n\ge 6$ then $W(μ)$ belongs to the $p$-Schatten class. (2) There exist Schatten class operators with linearly dependent quantum translates.