论文标题
压力波 - 摩托孤子的理论和现象学
Theory and phenomenology of stressed wave-dark-matter soliton
论文作者
论文摘要
在敌对的湍流暗物质($ψ$ dm)中,有各种激发的星系搅动的光环($ψ$ dm),而索利顿甚至在极大的压力下大量呼吸。提出了$ψ$ dm soliton的集体激发理论。集体激发具有不同程度的耦合到负能量模式,在低阶激发通常需要更多的负能量耦合。开发了一个约束的变分原理,以评估小振幅摄动的频率和模式结构。预测的频率与模拟中发现的频率非常吻合。分手的边缘的孤子呼吸也是这项工作的亮点。即使在这种极端的非线性方案中,波函数扰动幅度也适中。仿真数据显示了稳定的振荡,频率弱取决于振荡振幅,并暗示了波函数的自洽的准线性模型,该模型解释了基态波函数和平衡密度的修改。由模拟数据构建的模拟解决方案可以使大振幅呼吸孤子的动力学发光并支持准线性模型,这证明了其能够很好地预测非线性特征性转移和在模拟中观察到的非线性特征频率变化的能力。
Soliton in the hostile turbulent wave dark matter ($Ψ$DM) halo of a galaxy agitates with various kinds of excitation, and the soliton even breathes heavily under great stress. A theory of collective excitation for a $Ψ$DM soliton is presented. The collective excitation has different degrees of coupling to negative energy modes, where lower-order excitation generally necessitates more negative energy coupling. A constrained variational principle is developed to assess the frequencies and mode structures of small-amplitude perturbations. The predicted frequencies are in good agreement with those found in simulations. Soliton breathing at amplitudes on the verge of breakup is also a highlight of this work. Even in this extreme nonlinear regime, the wave function perturbation amplitudes are moderate. The simulation data shows a stable oscillation with frequency weakly dependent on the oscillation amplitude, and hints a self-consistent quasi-linear model for the wave function that accounts for modifications in the ground state wave function and the equilibrium density. The mock solution, constructed from the simulation data, can shed lights on the dynamics of the large-amplitude breathing soliton and supports the quasi-linear model, as evidenced by its ability to well predict the nonlinear eigenfrequency shifts and large-amplitude breathing frequency observed in simulations.