论文标题
Matroids,Feynman类别和Koszul二元性
Matroids, Feynman categories, and Koszul duality
论文作者
论文摘要
我们表明,诸如食物环和Orlik-Solomon代数的各种组合型组合可能会组装成“类似的”结构。具体而言,一个人在某个Feynman类别上获得了几个作业,我们将详细介绍和研究。此外,我们在Chow Rings和Orlik-Solomon代数之间建立了Koszul型二元性,从而大大概括了Getzler的著名结果。这提供了Orlik-Solomon代数组合模型组合模型的新解释。
We show that various combinatorial invariants of matroids such as Chow rings and Orlik--Solomon algebras may be assembled into "operad-like" structures. Specifically, one obtains several operads over a certain Feynman category which we introduce and study in detail. In addition, we establish a Koszul-type duality between Chow rings and Orlik--Solomon algebras, vastly generalizing a celebrated result of Getzler. This provides a new interpretation of combinatorial Leray models of Orlik--Solomon algebras.