论文标题
预测全球星系特性的亚毫米滤光片密度
Predicting sub-millimeter flux densities from global galaxy properties
论文作者
论文摘要
近年来,人们对使用辐射转移代码进行后处理的宇宙学模拟越来越兴趣,以预测模拟星系可观察到的通量。但是,这可能很慢,并且在模拟无法解决ISM的情况下需要许多假设。缩放模拟更好地解决了ISM的详细结构和恒星和气体的几何形状,但是由于模拟甚至单个光环的计算成本,统计量受到限制。在本文中,我们利用一组高分辨率,宇宙学的缩放模拟> 10^10^10^10.5m_sol在z = 2时,从火套件中构成星系的星系。我们在红移范围1.5 <z <5的数百个快照上运行裙子辐射传输代码,并校准灰尘质量,恒星形成速率和870UM通量密度之间的功率定律缩放关系。派生的缩放关系表明,从亚毫米选择的AS2UDS样本中的观察结果表明了令人鼓舞的一致性。我们将其扩展到其他波长,从而在340UM和870UM之间观察到的框架波长处的尘埃质量,恒星形成速率,恒星形成速率以及红移密度之间的缩放关系。然后,我们将缩放关系应用于从Eagle绘制的星系,这是一个大盒子宇宙学模拟。我们表明,缩放关系预测了鹰亚毫米数的数量,这些数量与以前使用更昂贵的辐射转移技术得出的结果非常吻合。我们的缩放关系可以应用于其他模拟和半经验或半经验模型,以生成对亚毫米数计数的强大和快速预测。
Recent years have seen growing interest in post-processing cosmological simulations with radiative transfer codes to predict observable fluxes for simulated galaxies. However, this can be slow, and requires a number of assumptions in cases where simulations do not resolve the ISM. Zoom-in simulations better resolve the detailed structure of the ISM and the geometry of stars and gas, however statistics are limited due to the computational cost of simulating even a single halo. In this paper, we make use of a set of high resolution, cosmological zoom-in simulations of massive M_star>10^10.5M_sol at z=2), star-forming galaxies from the FIRE suite. We run the SKIRT radiative transfer code on hundreds of snapshots in the redshift range 1.5<z<5 and calibrate a power law scaling relation between dust mass, star formation rate and 870um flux density. The derived scaling relation shows encouraging consistency with observational results from the sub-millimeter-selected AS2UDS sample. We extend this to other wavelengths, deriving scaling relations between dust mass, stellar mass, star formation rate and redshift and sub-millimeter flux density at observed-frame wavelengths between 340um and 870um. We then apply the scaling relations to galaxies drawn from EAGLE, a large box cosmological simulation. We show that the scaling relations predict EAGLE sub-millimeter number counts that agree well with previous results that were derived using far more computationally expensive radiative transfer techniques. Our scaling relations can be applied to other simulations and semi-analytical or semi-empirical models to generate robust and fast predictions for sub-millimeter number counts.