论文标题

prosfda:及时基于学习的无源域的适应医疗图像细分

ProSFDA: Prompt Learning based Source-free Domain Adaptation for Medical Image Segmentation

论文作者

Hu, Shishuai, Liao, Zehui, Xia, Yong

论文摘要

在不同情况下获取的医学图像之间存在域差异,这是部署预训练的医学图像分割模型以供临床使用的主要障碍。由于由于巨大的数据大小和隐私问题,因此使用预训练模型分发培训数据的可能性较小,因此根据伪标签或先验知识,最近对无源的无监督域适应性(SFDA)进行了越来越多的研究。但是,基于伪标签的SFDA使用的图像特征和概率图以及一致的先验假设和先前引入的SFDA使用的先前预测网络,当域差异很大时,可能会变得不那么可靠。在本文中,我们建议基于\ textbf {pro} MPT学习\ TextBf {sfda}(\ textbf {prosfda})用于医学图像分割的方法,该方法旨在通过显式将域差异最小化来提高域适应的质量。具体而言,在及时的学习阶段,我们通过添加域感知的提示来估算源域图像,以实现目标域图像,然后通过最小化统计对准损失来优化提示,从而促使源模型在(更改)目标域图像上生成可靠的预测。在特征对齐阶段,我们还将目标域图像及其样式启动的功能对齐以优化源模型,从而将模型推动以提取紧凑的特征。我们在两个多域医学图像分割基准上评估了我们的prosfda。我们的结果表明,所提出的ProSFDA的表现大大胜过其他SFDA方法,甚至与UDA方法相当。代码将在\ url {https://github.com/shishuaihu/prosfda}上找到。

The domain discrepancy existed between medical images acquired in different situations renders a major hurdle in deploying pre-trained medical image segmentation models for clinical use. Since it is less possible to distribute training data with the pre-trained model due to the huge data size and privacy concern, source-free unsupervised domain adaptation (SFDA) has recently been increasingly studied based on either pseudo labels or prior knowledge. However, the image features and probability maps used by pseudo label-based SFDA and the consistent prior assumption and the prior prediction network used by prior-guided SFDA may become less reliable when the domain discrepancy is large. In this paper, we propose a \textbf{Pro}mpt learning based \textbf{SFDA} (\textbf{ProSFDA}) method for medical image segmentation, which aims to improve the quality of domain adaption by minimizing explicitly the domain discrepancy. Specifically, in the prompt learning stage, we estimate source-domain images via adding a domain-aware prompt to target-domain images, then optimize the prompt via minimizing the statistic alignment loss, and thereby prompt the source model to generate reliable predictions on (altered) target-domain images. In the feature alignment stage, we also align the features of target-domain images and their styles-augmented counterparts to optimize the source model, and hence push the model to extract compact features. We evaluate our ProSFDA on two multi-domain medical image segmentation benchmarks. Our results indicate that the proposed ProSFDA outperforms substantially other SFDA methods and is even comparable to UDA methods. Code will be available at \url{https://github.com/ShishuaiHu/ProSFDA}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源