论文标题

使用多个BCI任务的联合深层转移学习用于EEG解码

Federated deep transfer learning for EEG decoding using multiple BCI tasks

论文作者

Wei, Xiaoxi, Faisal, A. Aldo

论文摘要

深度学习在BCI解码方面取得了成功。但是,它非常渴望数据,需要从多个来源汇总数据。来自各种来源的脑电图数据降低了由于负转移而导致的解码性能。最近,已建议对EEG解码进行转移学习作为一种补救措施,并受到最近的BCI竞赛(例如Beetl)的约束,但是结合许多受试者的数据有两种并发症。首先,由于需要共享高度个人的大脑数据(并在越来越紧密的信息治理边界复制),因此不受保护。此外,BCI数据是从不同来源收集的,通常基于不同的BCI任务,这被认为限制了它们的可重复性。在这里,我们根据我们先前的SCSN工作,展示了联合的深层转移学习技术,即联合的多数据集,联合的单独共同分离网络(MF-SCSN),该网络将隐私性的属性集成到深层传输中,以将数据集整合在一起,以将数据集与不同的任务相结合。该框架使用从不同的图像任务获得的不同源数据集训练BCI解码器(例如,某些带有手和脚的数据集,与单身手和舌头等其他数据集”。因此,通过引入保护隐私的转移学习技术,我们可以解锁现有BCI数据集的可重复使用性和可扩展性。我们在神经2021 BETL竞争BCI任务上评估了我们的联合转移学习方法。所提出的架构的表现优于基线解码器3%。此外,与基线和其他转移学习算法相比,我们的方法保护了来自不同数据中心的大脑数据的隐私。

Deep learning has been successful in BCI decoding. However, it is very data-hungry and requires pooling data from multiple sources. EEG data from various sources decrease the decoding performance due to negative transfer. Recently, transfer learning for EEG decoding has been suggested as a remedy and become subject to recent BCI competitions (e.g. BEETL), but there are two complications in combining data from many subjects. First, privacy is not protected as highly personal brain data needs to be shared (and copied across increasingly tight information governance boundaries). Moreover, BCI data are collected from different sources and are often based on different BCI tasks, which has been thought to limit their reusability. Here, we demonstrate a federated deep transfer learning technique, the Multi-dataset Federated Separate-Common-Separate Network (MF-SCSN) based on our previous work of SCSN, which integrates privacy-preserving properties into deep transfer learning to utilise data sets with different tasks. This framework trains a BCI decoder using different source data sets obtained from different imagery tasks (e.g. some data sets with hands and feet, vs others with single hands and tongue, etc). Therefore, by introducing privacy-preserving transfer learning techniques, we unlock the reusability and scalability of existing BCI data sets. We evaluated our federated transfer learning method on the NeurIPS 2021 BEETL competition BCI task. The proposed architecture outperformed the baseline decoder by 3%. Moreover, compared with the baseline and other transfer learning algorithms, our method protects the privacy of the brain data from different data centres.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源