论文标题
Coconet:与多模式图像融合的多级特征集合的耦合对比度学习网络
CoCoNet: Coupled Contrastive Learning Network with Multi-level Feature Ensemble for Multi-modality Image Fusion
论文作者
论文摘要
红外且可见的图像融合目标通过结合来自不同传感器的互补信息来提供信息图像。现有的基于学习的融合方法试图构建各种损失功能来保留互补功能,同时忽略发现两种方式之间的相互关系,从而导致有关融合结果的多余甚至无效的信息。此外,大多数方法着重于增强网络,深度增加,同时忽略特征传输的重要性,从而导致重要信息退化。为了减轻这些问题,我们提出了一个称为Coconet的耦合对比度学习网络,以端到端的方式实现红外和可见的图像融合。具体而言,为了同时保留典型的模式中的典型特征,并避免在融合结果上出现伪像,我们在损失函数中产生了对比度的约束。在融合图像中,其前景目标 /背景细节部分被拉到红外 /可见源,并远离表示空间中可见 /红外源。我们进一步利用图像特征来提供数据敏感的权重,从而使我们的损失功能与源图像建立了更可靠的关系。建立了一个多层次注意模块,以学习丰富的层次特征表示并在融合过程中全面传输特征。我们还将提出的椰子应用于不同类型的医学图像融合,例如磁共振图像,正电子发射断层扫描图像和单光子发射计算机断层扫描图像。广泛的实验表明,我们的方法在主观和客观评估下都能达到最先进的表现(SOTA),尤其是在保留重要目标并恢复重要的质地细节时。
Infrared and visible image fusion targets to provide an informative image by combining complementary information from different sensors. Existing learning-based fusion approaches attempt to construct various loss functions to preserve complementary features, while neglecting to discover the inter-relationship between the two modalities, leading to redundant or even invalid information on the fusion results. Moreover, most methods focus on strengthening the network with an increase in depth while neglecting the importance of feature transmission, causing vital information degeneration. To alleviate these issues, we propose a coupled contrastive learning network, dubbed CoCoNet, to realize infrared and visible image fusion in an end-to-end manner. Concretely, to simultaneously retain typical features from both modalities and to avoid artifacts emerging on the fused result, we develop a coupled contrastive constraint in our loss function. In a fused image, its foreground target / background detail part is pulled close to the infrared / visible source and pushed far away from the visible / infrared source in the representation space. We further exploit image characteristics to provide data-sensitive weights, allowing our loss function to build a more reliable relationship with source images. A multi-level attention module is established to learn rich hierarchical feature representation and to comprehensively transfer features in the fusion process. We also apply the proposed CoCoNet on medical image fusion of different types, e.g., magnetic resonance image, positron emission tomography image, and single photon emission computed tomography image. Extensive experiments demonstrate that our method achieves state-of-the-art (SOTA) performance under both subjective and objective evaluation, especially in preserving prominent targets and recovering vital textural details.